Binary Black Hole Simulations

20 June 2006

Frank Herrmann

Institute for Gravitational Physics and Geometry
Center for Gravitational Wave Physics

herrmann@gravity.psu.edu

Numerical Relativity

Astonishing progress in the last year

- Pretorius has stable black hole orbits
- UTB and NASA bring stable codes to the community
 - "Moving Punctures"
 - Small modifications of evolution [UTB] or gauge equations [NASA]
 - Simple implementation
- Code crashes are (pretty much) history
 - ▶ I still have occasional crashes, but they are rare
 - Frequently there is an easy workaround,
 i.e. a little more dissipation, moving the outer boundary further out, ...

Unequal-Mass Simulations

Study different mass ratios $q = M_1/M_2$ (comparable masses)

- Look for effects in waveforms
- Study recoil velocities from full numerical simulations

Initial data: Increase one of the bare mass parameters for QC-0

- Numerical convenience rather than astrophysical realism
- Of course more stuff changes than just the mass ratio . . .

Time to common apparent horizon

$q \equiv M_1/M_2$	t_{AH}/M_{ADM}	
1.00	18.4	
0.85	12.2	
0.78	9.9	
0.55	5.5	
0.32	1.5	

Apparent Horizon Snapshots [q=0.78]

 $t = \{0, 4.6, 9.9, 40, 80, 105\} M_{ADM}$

Irreducible Mass of the AH

q: mass ratio

Waves: Zerilli ψ & Newman-Penrose Ψ_4 [q=0.85]

 Ψ_4 provided by Ian Hinder and Tanja Bode

Getting the Numbers out of Zerilli

Extract radiation using Zerilli $\psi_{\ell m} \to h_{ij} \to estimate$ radiated E, J, V

$$\begin{split} \frac{dE}{dt} &= \frac{1}{16\pi} \sum_{\ell m} \frac{(\ell+2)!}{(\ell-2)!} \left[\left| \frac{d\psi_{\ell m}^+}{dt} \right|^2 + \left| \psi_{\ell m}^\times \right|^2 \right] \\ \frac{dJ}{dt} &= \frac{1}{16\pi} \sum_{\ell m} \iota m \frac{(\ell+2)!}{(\ell-2)!} \left[\frac{d\psi_{\ell m}^+}{dt} \left(\psi_{\ell m}^+ \right)^* + \psi_{\ell m}^\times \int_{-\infty}^t \left(\psi_{\ell m}^\times \right)^* dt' \right] \\ h_+ - \iota h_\times &= \frac{1}{r} \sum_{\ell, m} \sqrt{\frac{(\ell+2)!}{(\ell-2)!}} \left[\psi_{\ell m}^+ - \iota \int_{-\infty}^t \psi_{\ell m}^\times dt' \right]_{-2} Y^{\ell m}(\theta, \varphi) + \mathcal{O} \left[\frac{1}{r^2} \right] \\ \frac{dP^k}{dt} &= \frac{r^2}{16\pi} \int_S \left[\left(\frac{dh_+}{dt} \right)^2 + \left(\frac{dh_\times}{dt} \right)^2 \right] n^k d\Omega \end{split}$$

Results from radiation extraction

q	$\Delta E/M_{ m ADM}$ [%]	$\Delta J/J_{ m ID}$ [%]	V(km/s)
1.00	2.7 ± 0.4	15 ± 3	1 ± 1
0.85	1.7 ± 0.1	10 ± 0.4	49 ± 11
0.78	1.1 ± 0.4	7.4 ± 0.4	69 ± 19
0.55	0.4 ± 0.1	2.6 ± 0.3	82 ± 27
0.32	0.05	0.4	25

Error in radiated energy and radiated angular momentum not phase dependent

- ΔE , ΔJ depend only on independent $\psi_{\ell m}$ modes
- Peaks dominate and in particular ψ_{22} dominates

Kick velocity is much more tricky

- Overlap between modes is crucial
- Fully exposed to relative phase error between $\psi_{\ell m}$ modes
- Waveforms were truncated to T = [7,70]M for recoil velocity

Different recoil estimates

- Favata et al
- Campanelli et al
- Damour & Gopkumar
- NASA-GSFC
- Penn State

 $\eta = m_1 m_2/(m_1 + m_2)^2$ Blanchet, Qusailah, Will 2005

Getting to Further Separations

- Comparison of AH center and puncture location via $\partial_t x_P^i = -\beta^i(x_P)$
- different finite difference orders for advection terms $(\beta^i \partial_i)$ only

Outlook & Conclusions

Current BH evolution recipe:

Move the holes, don't bother with excision

Many groups now have working codes

- Independent checks of results
- Comparison of different codes

Lots of stuff will be studied in the next 1-2 years

- Thorough study of unequal-mass systems and spin
- Recoil velocity in particular is sensitive quantity
- More numerical experience is needed

I still see crashes, but much less fine-tuning needed

END

This is the End.

Appendix

Appendix starts here.

PSU Implementation

Basically follow NASA prescription [gr-qc/0511103]

- Easier to implement than UTB
- Gauge modification for standard Γ-Driver
- New advection term $\beta^i \partial_i \tilde{\Gamma}^i$ (removes "puncture memory effect") $\partial_t \beta^i = \frac{3}{4} \alpha B^i$, with $\partial_t B^i = \partial_t \tilde{\Gamma}^i \beta^j \partial_j \tilde{\Gamma}^i \eta B^i$
- Use "1+log" α -evolution, i.e. $\partial_t \alpha = -2\alpha K$
 - \triangleright (i.e. no $\beta^i \partial_i \alpha$ term) unlike NASA and UTB

Initial Gauge

- Initial shift $(\beta^i = 0, B^i = 0)$
- Initial Lapse
 - \triangleright pre-collapsed $\alpha = \psi^{-2}$
 - Like UTB
 - \triangleright No Instabilities if initially $\alpha = 1$, but the gauge pulse is smaller
 - Less dynamics as the gauge settles down in first few M

Unequal-Mass Simulations

Motivation:

- Supermassive Black Holes [LISA]
 - Kicks and Structure formation
- Stellar-Mass Black Holes: Structure in waveform? [LIGO]
 - Detection of GW signal more difficult
 - Parameter Estimation might be easier